Saturday, March 28, 2009

Summaries of a Number of Proposed Missions


Ted Stryk has a guest blog at the Planetary Society's web page summarizing the talks given on future mission concepts at the Lunar and Planetary Science Conference. These are the same missions that I summarized from their abstracts a month and a half ago.

Ted's summary is well worth reading, even after learning that a favorite mission of mine for the next New Frontiers mission, Cerberus, a Mars geophysical mission, has been cut from consideration. It appears that JPL is holding its own internal competition among New Frontiers concepts. A $650M contract is big business, and my guess is that JPL will put its efforts into creating the best possible proposals for what it considers to be the best one or two candidates. I've heard that the Kevin Baines' Venus balloon mission also was cut in the internal competition.

Resources:

Stryk's summaries from the LPSC presentations

My summaries from the abstracts


40th Lunar and Planetary Science Conference

Stryk's abstract from LPSC on reprocessing Voyager 2's Triton photos

Stryk's webpage of planetary photos

Friday, March 27, 2009

Steve Squyres on the Decadal Survey


The journal Nature has just posted an interview with the new chair of the Decadal Survey, Steve Squyres. The short version: Squyres will focus on ensuring realistic cost and feasibility estimates; no missions are sacred, and even the Jupiter Europa orbiter and Mars Sample Return can be removed from the roadmap; and he promises that he won't advocate for Mars.

You can read the entire interview here.

Thursday, March 26, 2009

Relationship Problems


The subscription-only journal Science has a long article in this week's issue (March 27, 2009) discussing the problems facing NASA and ESA in planning a joint Mars exploration program. A joint program is the goal of the heads of the two space agencies' science divisions. They plan to have worked out a program by this summer for both a joint 2016 mission and a series of follow on missions culminating in a joint sample return mission.

The crux of the problem for both agencies is money. The current ExoMars rover and lander (both substantial science platforms) is $1.56B, and ESA's member nations have pledged only $1.1B. After the Mars Science Laboratory (MSL) cost overruns, NASA will have only $700 for a 2016 mission, with $50-80M of that pledged for ExoMars instruments. NASA would like to do a Mars orbiter for 2016 that would act as a long-lived communication relay for landers and rovers, follow up on the discovery of methane in the atmosphere, and continue high resolution imaging of the surface. With the money available, however, the orbiter that could be flown would have a limited instrument suite. The article quotes the head of NASA's MEPAG Mars science community group as saying that what can be done as, "Not much."

The article goes on to list the problems facing the creation of a joint program:

o One ExoMars investigator is said to state that bringing in the U.S. or Russia into the mission will simply delay it. On the other hand, a former NASA official is quoted to point out that ESA's first attempt to land on Mars (Beagle 2 was not an official ESA project) will be ExoMars, and it is more complicated than NASA's MSL.

o The budgeting process of the two agencies will be hard to synch. NASA plans in terms of multi-mission roadmaps, while ESA plans in terms of single missions. NASA, however, is funded annually while ESA has greater funding stability.

o There is not agreement in the science community that there should be a sequence of missions between MSL (2011) and ExoMars (2016) and Mars Sample Return (MSR). One ExoMars scientist is quoted as saying that Mars exploration should go from ExoMars to MSR in 2018. Right now, NASA is thinking of a mid-capability rover in 2018 and possibly a joint network mission with ESA in 2020 before MSR.

The article lists the price tag for MSR as $6-8B. This is $2B higher than I've seen in the past.

Editorial thoughts: I think that the problems discussed at some length (it's a two page article) are real. It will be interesting to see if the two agencies can work them out. Mars has become expensive. All the missions I've read about for the next decade in NASA documents, not including MSR, are $1-1.5B each. If NASA funds the Jupiter Europa mission, flies MSL and the Mars MAVEN orbiter, and launches several New Frontiers and Discovery missions, there may be room in NASA's budget for only one or two of this class of mission in the coming decade. ESA faces a similar problem in looking for good missions to fly to Mars. Together, more can be done.

It seems to me that the key question around the entire Mars and planetary program is whether or not MSR is monetarily feasible. At the high end of the costs quoted in the Science article, MSR could be the entire planetary mission program for both agencies for almost a decade at current budget levels. I have not heard of the political support in the U.S. to substantially increase the planetary exploration program to fund both MSR and a set of other missions. I am hoping that the Decadal Survey will finally settle the monetary priorities. Is MSR so compelling that it is worth all the missions that could be flown in its stead? If so, we should put our resources behind finally flying it. If not, then we should take it off the roadmap so that the best Mars and planetary program can be planned.

Wednesday, March 25, 2009

Decadal Survey Taking Shape


The next Decadal Survey for planetary missions is taking shape. I am encourage by what I'm reading (but more on that in the editorial notes).

Steven Squyres, at Cornell University and PI for the MER Mars Rover, has been named chair and Larry Soderblom, from the USGS Astrogeology Team in Flagstaff, Arizona, has been named vice-chair. Over the next two and a half years, the Decadal Survey will prepare a report that:

  • An "inventory of top-level scientific questions that should guide flight programs and supporting research programs"
  • Recommend the "optimum balance among small, medium, and large missions"
  • Create a "prioritized list of major flight investigations in the New Frontiers and larger classes recommended for initiation over the decade 2011-2020'"
  • Prepare "a prioritized list of major flight investigations in the New Frontiers and larger classes recommended for initiation over the decade 2011-2020"
  • Create a "list of important science goals which could be achieved by small spacecraft (Discovery and Scout class) missions"

The process will be organized by panels focused on different classes of solar system bodies: inner planets, Mars, outer planets, outer planet satellites, and primitive bodies (asteroids and comets). These panels will take input from established panels (such as MEPAG, VEXAG, etc.), from town halls, from ad hoc groups of scientists with a shared interests, and individuals (with a specific note including input from students).

The following points from the latest Decadal Survey emphasize key points that will be different than the process last time:

"Compared to previous decadal surveys, this one will place much greater emphasison evaluation of the technical maturity and probable costs of candidate missions.
  • The Panels and the Steering Committee will include members who are expert in engineering, project management, and cost estimation.
  • Resources are available to do moderate-fidelity (and conservative!) cost estimates for a limited number of high-priority candidate missions.
  • The objective is to produce a realistic (i.e., not heavily over-subscribed) set of candidate missions for NASA to carry out in the coming decade."
A key criticism of the last planetary (and astronomy) Decadal Survey was that the list of priority missions had wildly optimistic (i.e., low) cost estimates. As a result, list of missions was unaffordable.

Another key aspect of the Decadal Survey will be that "Mars missions will be considered on an equal basis with all other missions. No 'set aside'for Mars exploration will be assumed a priori."

Editorial thoughts: I am encouraged by the early direction the Decadal Survey is taking. NASA and the planetary community have clearly learned from the mistakes of the last Survey, which nevertheless provided the roadmap for the planetary exploration program of the past decade. It turned out that only a portion of the program could be implemented within the available budget. (And a more capable and expensive Mars Science Laboratory was substituted for the one prioritized by the Survey.)

I expect that the Survey will still prioritize more missions than can be afforded. In my days of working budget processes, you always asked for more than you expected. What I will be looking for is a clear set of priorities both among missions and among classes of missions. If that is clear, then the highest priorities should be funded (assuming similar budgets for the next decade).

I would also be surprised if Mars does not remain a high priority and receives a good portion of the proposed resources. Looking at various mission proposals, Mars is simply cheaper to explore both because it is close and it has a relatively benign environment. A mission similar to the Jupiter Europa Orbiter (~$3B), for example, would probably be a half to a third that much at Mars.

Here are some predictions (I'll try to remember to score them in two and a half years).
  • I expect that Mars will get around one-third of the mission development funds, Jupiter Europa another third, and New Frontiers and Discovery missions will receive the remaining third.
  • The tough discussion will be between preparing for a Venus or Titan Flagship mission the following decade. Both deserve investigation, but if NASA can afford one Flagship mission in the 2020s (as it has in the 2000's and 2010's), only one is likely to fly. My guess is that the Survey will call for early development for both to enable a competition between them in about a decade.
  • The other tough debate will be around the list of priorities for the Discovery and New Frontiers missions. The priorities set in the last Survey have guided the selection of these mssions in the past decade. Because these missions are led by individual researchers who have specific missions they want to see fly, the desire to get particular goals prioritized will be strong.

I welcome your predictions in the comments.

Resources:

Decadal Survey home page

Latest presentation on process to be followed

Monday, March 23, 2009

Mars Program - Dead Man Walking?

" The robotic Mars program is sort of a planetary Dead Man Walking these days, as scientists debate what missions should be next on the agenda and how Mars should compete for funding with other compelling destinations ranging from our own moon to potentially life-harboring moons in the outer solar system."

So begins an article by long time space journalist Leonard David. He reports on the on-going debate on how to restructure the Mars program following the delay and cost overrun of the Mars Science Laboratory (MSL). In addition to the delay to this Flagship-class mission, funding the overrun is draining NASA's advanced technology programs for future Mars missions. NASA had planned on having technologies to allow for ever more pinpoint landings, opening up new places on the surface to visit. It also planned to spend to develop technologies for a Mars Sample Return (MSR) mission. Now those capabilities will be delayed at least two years and perhaps more as teams need to be rebuilt when money becomes available.

David reports that one leading Mars scientist, Chris McKay of the Ames Research Center writes that three factors will lead to a substantial revamping of the Mars program: (1) the delay and cost overrun of MSL, (2) missions that go beyond the capabilities of past and planned missions will be in the Flagship ($2-3B) cost realm, and (3) other locations for searching for life such as Enceladus and Titan provide alternative destinations. McKay still believes the Mars deserves to be the focus of robotic planetary missions, but as a lead in to future manned exploration.

Another Mars Researcher is quoted by David,
Bruce Jakosky of the University of Colorado at Boulder, as saying that the Mars program remains fundamentally sound. While the program needs to be replanned, there are many options for cheaper missions. (Jakosky's Mars Maven planned for launch in 2013 will cost around $450M.)

Editorial Thoughts: I feel that this debate feels like the glass half empty versus the glass half full discussion. Yes, the Mars and NASA's overall planetary programs will take a major hit from the MSL delay. Yes, other good missions could have been flown for what MSL will cost. However, there isn't a right answer to how much should be spent exploring Mars. It is a subjective question of balance between Mars and other destinations. The most critical decision of the upcoming Decadal Survey, in my opinion, will be on the balance between funding for future Mars missions versus those other destinations. A case could be made for devoting the entire budget to Mars [let's focus on exploring one world in depth], for devoting none of it to Mars [Mars has been the focus for the last 15 years and it's time to move one], to virtually any balance in between. If the Decadal Survey simply lists a number of good missions whose probable costs exceed probable funding, then in my opinion it will not have made the hard decision of how to set priorities.

I also don't feel that flying ever more complicated missions to Mars is the onlyway to expand our knowledge of the Red Planet. (I say this knowing that many more knowledgeable than I are likely to disagree.) We could have a strategy of flying a series of rovers more capable than Spirit and Opportunity but less capable than MSL to a number of locations to find the one most deserving of a future flagship-class mission (be it a rover, a deep driller, or a sample return). We could focus on exploring Mars as a system and spend a decade putting simple network landers across the surface and a series of orbiters to address questions left unanswered by past and planned missions. (The science team that debated the focus of the planned Mars Science Orbiter (which may fly in a reduced configuration in 2016) identified three core study areas that future orbiters could focus on.)

I'm not saying that this should be our goal at Mars -- they don't pay me the big bucks to make those decisions and nor do I feel well enough informed. I do think that there are a range of mission options and price tags that could continue our exploration of Mars.

Resources: Leonard David's article at Space.com