Dozens of ideas were presented. Travel prevented me from listening in to the sessions. However, planetary geologist Philip Horzempa who has a long term interest in future mission planning was able to follow the workshop. He was kind enough to gather his thoughts and views on the ideas that were presented:
Report on "Mars Concepts and Approaches" Workshop of
June 2012
This NASA-sponsored conference
was a way to reach out to the larger Mars community for suggestions on
re-planning the Mars Exploration Program (MEP) at the space agency. During 3 days of discussion, an amazing
variety of concepts were presented.
These ranged from discussions of entire missions to proposals of
individual instruments. I was not there
in person, but was able to experience some of it virtually, through NASA's
webcast. The overall impression that I
got was that there is a lot of interest in approaching Mars exploration in a
smarter fashion. The hope is that this
will lead to missions that are affordable in the new, constricted budget
environment. One aspect of this workshop
that may have been overlooked is the involvement of NASA's manned spaceflight
division, formally called the Human Exploration and Operations Mission
Directorate (HEOMD). Much of this
involvement may be traced to the MEPAG meeting in February of this year. Perhaps to allay the shock and chagrin of
scientists over White House plans to cut funding for the MEP, NASA formulated
the P-SAG, the Precursor Science Analysis Group. Its charter was to examine any overlap in
goals between the manned and robotic Mars programs. Their report, completed at
the end of May 2012, listed numerous Strategic Knowledge Gaps, or SKG's, that
need to be filled before we launch manned missions to Mars. It is interesting to note that Mars Sample
Return (MSR) is one of the top priorities of both P-SAG and the recent
Planetary Decadal Survey.
Orlando Figueroa, the leader of NASA's Mars re-planning effort, pointed out that one reason for this workshop
was to see how manned and unmanned programs could cooperate. It appears that an MSR mission, or series of
missions, may be one of those areas of cooperation.
In addition to manned
spaceflight, NASA's Office of the Chief Technologist, the OCT, will be part of
the new cross-agency Mars effort. This
trio should make for an interesting partnership.
One factor in this
cooperation is funding. With the MEP
program heading for financially lean times, the manned program, and the OCT,
may be contributing to the pool of funding for future Mars missions. This additional funding may allow more
ambitious missions, such as sample return.
So, a Mars mission in 2018, and those that follow, may be serving, in
addition to their role as robotic explorer/scientist, as Precursors for future
manned missions, as well as technology testbeds . Science may need to share the ride in order
to get to Mars at all.
The Concepts workshop opened
with reference to the manned Mars roadmap.
NASA has been "directed" by President Obama to send a manned
mission to orbit Mars post-2030. Doug
McQuiston, of NASA Headquarters, reported that the agency is using this as
guidance in developing plans for Mars exploration. To give that plan a focus, NASA has chosen
the April 2033 Mars launch window as the target for launching a manned mission
to Mars orbit. They will then track back
from that date to gauge what needs to be done to prepare for it. It was pointed out during this workshop that,
because the first manned Mars mission is now an orbital mission, the crew will
not benefit from the radiation protection afforded by Mars' atmosphere. As a result, the emphasis is now on doing a
fast mission - get to Mars, and get back quickly - in order to lower exposure
time for the crew. This will influence
NASA's decisions on propulsion and trajectory for that mission.
Another note on the manned
side of the ledger concerns the delay of the first manned landing mission. While the Constellation program was in
effect, a relatively near-term Mars landing meant that NASA engineers could not
consider such enabling technologies as In-Situ Resource Utilization
(ISRU). They needed to stay with proven
technology. NASA's detailed plan for
this, DRM (Design Reference Mission) version 5.0, was referenced at the
meeting. With the landing put off to some indefinite time, they now have the
liberty to consider technology options that are not yet mature.
The workshop presentations
were numerous and for the most part fascinating. I will pick several that caught my
attention. These will be only a small
sample of the plethora of ideas submitted to the conference. There were a total of about 175 oral
presentations, as well as approximately 150 print-only reports. This collection of proposals is a valuable
resource for NASA as it charts a new path forward for Mars exploration. It is remarkable how far the technology needed
for that exploration has advanced in the past 10 years.
Van's previous post
mentioned the modernized MER rover. This
design was referenced by several proposals, including a Mars Polar Rover. As Van pointed out, this MER-class rover is
being looked to as a caching rover, possibly for the 2018 launch window. This would serve as the 1st step in an MSR
campaign. I think that I caught a bit
of a pushback to this high priority for MSR.
This is reflected in the proposal, that Van referenced, for a multi-year
MER caching campaign. This would see 1
or 2 MER-class rovers sent to Mars in every launch window over a decade. This would result in landing at 5 - 10
individual sites. The MER-class rovers
would serve 2 purposes - expanded exploration and caching in preparation for
MSR. At the end of the decade, there
would be 5 - 10 caches waiting on the surface of Mars, waiting for a retrieval
mission.
In addition to the MER-class
rovers, there were proposals for many mobility options. There were smaller, lighter, simpler
rovers. There were unmanned airplanes,
helicopters, kites, hoppers, "tumbleweeds," "maple seeds"
and balloons. One of the
"edgier" methods involved a dragonfly-like entomopter that looked like
it came out of a Star Wars movie (1).
It would use a MER-class rover as a mobile base for the robot
"insects."
Other mobility concepts
attacked the challenge of sites with steep slopes, such as caves and
skylights. One concept showed a video of
a robotic hand that could grip rock surfaces, much as a free-climber does on
the Earth. (2) Amazing.
In connection with MSR, there
were a variety of proposals that addressed ways of making sample return more
feasible, both technically and fiscally.
One area of focus was the use of ISRU in providing propellant for a Mars
Ascent Vehicle (MAV). There have been
many ISRU proposals over the years, but this workshop saw new twists on the
story, including one in which Magnesium is burned to provide thrust for a MAV
(Mars Ascent Vehicle) using Carbon Dioxide drawn from the atmosphere or water
from ice deposits (3).
There were numerous other
ISRU concepts set forth. A near-term
mission that would test ISRU on the surface of Mars seems to be of interest for
both manned and unmanned programs. The
new thinking at NASA regarding manned Mars surface missions is that the agency
would like to see supplies waiting for a crew.
Those expendables would need to be generated by automated ISRU. This is one example where the delay in a
manned Mars landing may allow the use of an enhancing technology.
Another popular area of
interest was the use of Solar Electric Propulsion, SEP, in the Earth-return
step of MSR. Many sample return
scenarios now seem to be concentrating on the "tough" part, i.e.,
collecting samples and getting them safely into orbit around Mars. Once that is accomplished, many appear to
assume that a SEP "tug" could collect the orbiting sample canister,
then slowly spiral out of Mars orbit, returning to the Earth, or possibly
Earth's L2 location. Sample return using SEP would take longer, but would allow
the return of a greater mass of samples, as well as reducing the cost.
In addition, the use of an SEP vehicle allows a wide dispersion of parking
orbits for the sample canister. This in
turn, means that the guidance system of an MAV can be simple, even rudimentary,
and therefore cheaper. As with ISRU,
SEP seems to have "turned the corner" in the minds of Mars mission
planners. At meetings such as this, some
ideas seem to experience a wave of acceptance.
This seems to have occurred with ISRU and SEP.
One out-of-the-box proposal
for a cheap method of getting samples from Mars orbit to the Earth's vicinity
would utilize Interplanetary Cubesats (4). This proposal would use a version of ion
propulsion, Microfabricated Electrospray Propulsion, MEP. This is a newly-developed technique, using
Indium as propellant. Like SEP, this
concept would slowly transport samples from Mars orbit to the Earth's L2
location. If NASA sets up a manned
Waypoint Base at L2, then the robotic sample return vehicle need not include a
heat shield and Earth-landing system. If
the samples are examined for life at this Waypoint, an Earth-based biological
isolation laboratory need not be built.
As for landing on Mars, this
workshop saw the introduction of 2 new EDL (Entry, Descent and Landing)
methods. The first would be utilized by
the ATHLETE rover (5). This
concept envisions using a MER-derived aeroshell and heat shield. However, instead of MER's bouncing beach ball
of airbags, ATHLETE would use an SRM to cancel out most residual velocity near
the surface. It would also use 3 MLE
(Mars Landing Engine) thrusters developed for MSL, with the use of a single
vented airbag for surface contact.
The other new EDL system
would use Space-X's Red Dragon design (6). This would see the use of Dragon's Super
Draco thrusters, originally designed for launch abort, to deliver a high-g
retro-burn. This would be a nail-biter,
as the burn takes place supersonically, not far above the surface. This method may need a demo mission, perhaps
funded by Space-X to make people comfortable with using it.
The Red Dragon capsule design
was referenced in several proposals, as people see this as a possibly FBC
method of delivering instruments to the surface of Mars. It has an interior volume of 3 cubic meters,
and can transport 1,000 kg to the red planet, allowing a range of payloads.
One of my favorite mission
concepts is the Ground Breaking MSR, or GBM.
Since the MEP's recent budget free-fall, this mission has made a
comeback. There were several proposals
for just such a mission. The logic behind a GBM is that it is simple, thus
cheaper. It is noted that the more complex
scenarios for MSR have not gotten approved over the past 2 decades, primarily
because of sticker shock. With the
overruns in the MSL and JWST programs, Congress and the White House may be very
reluctant to sign on to a multiyear, multi-spacecraft, multi-billion-dollar
program. The logic behind GBM is one
that follows the model of the MoonRise New Frontiers proposal. That mission was designed to collect local
samples, encapsulate them, and launch them to the Earth. No rovers, no multi-core cache. The GBM's at this workshop envisioned using
the Phoenix lander as a base for a sample arm and the MAV.
Several proposals were made
regarding variations of an MAV. One of
these would test launch an MAV to Mars orbit, again using the Phoenix lander as
a base. (7) This may be one of
the less expensive missions, and would satisfy NASA's requirement that the 2018
mission be on the path to MSR. In the
print-only reports, there is a presentation by John Whitehead that I believe
summarizes the very real risks of any Mars Ascent Vehicle design (8). He stresses that there should be no
complacency when it comes to building and flying an MAV. There has never been a launch from the
surface of Mars, and there is no rocket system in existence that resembles the MAV. He points out that there is no comprehensive
MAV development program at NASA. His
warning should be read by all scientists involved in MSR. I was concerned to hear comments by
participants of this workshop that indicated that they thought building an MAV
was "blue-collar" work, i.e., not all that difficult. The truth is that they should be
worried. Launching a sample canister and
putting it into Mars orbit is a formidable task.
One other area of concern for
MSR is reliable detection of the sample canister in Martian orbit by the
Earth-return spacecraft. It is possible
that several years will have elapsed between the injection of the canister into
orbit around Mars and the arrival of the Earth-return vehicle. Whether that return craft uses SEP or MEP or
old-fashioned chemical propulsion, it will still need to find the
canister. A print-only paper proposes a
test of a system that could do that (9). It would use MRO's Op Nav Camera,
the ONC, to find the Mars Global Surveyor spacecraft that went silent a few
years ago. It is still in Mars orbit and
serves as a stand-in for future sample canisters. This would be a proof-of-concept and would
"buy down" the risk for this step in the MSR train of key
events. As a bonus, the ONC could be
used to track down other historic Mars Orbiters such as Mariner 9 and Viking
Orbiters 1 and 2.
One of my impressions from
these proposals is that sensor technology is advancing so rapidly that the
science case for MSR may be eroding over time.
As a geologist, I am impressed that the age-dating Rover could pin down
ages to a range of 60- 90 million years.
That may seem like a big error range, but really is not significant when
one is dealing with rocks that have ages of 1,000 - 4,500 million years. That is impressive accuracy for a
remotely-measured age determination. It
is just one example of the impressive technology showcased at this
conference. Another is the proposal to
fly a petrographic microscope to Mars.
This is one of the oldest and most valuable tools of a geologist. It literally enables a scientist to see the
minerals that make up a rock. If it can
be shown to work on another planet, I believe that yet another scientific
justification for MSR would disappear.
There was an update on the
ExoMars program from an ESA representative.
After the joint Roscosmos / ESA missions of 2016 and 2018, there are 2
proposed missions. One is PHOOTPRINT, a
sample return mission to Phobos. It is
unknown how much of the Phobos-Grunt heritage would be used in this
mission. The other concept is INSPIRE, a
geophysical network mission that would utilize 3 landers. It has not been decided which mission will
launch in 2022, with the other to follow in 2024.
There were several
personalities of note at this workshop.
One was Rob Manning, an engaging EDL engineer with experience that
reaches back to the Mars Pathfinder mission.
He was advocating one of the Ground Breaking MSR options (10). He commented that he has witnessed why
Pathfinder cost so little, and why the MSL rover costs so much. It comes down to complexity. As that increases, the cost expands
"fractally." Mr. Manning
emphasized simplicity and taking small steps in the effort to achieve MSR. He pointed out that MER could not have
succeeded without Pathfinder, and MSL could not have gone forward without
MER.
Another personality of note was
Robert Zubrin. For many years he has
been an advocate for a vigorous program of Mars exploration. At this meeting, his presentations and
comments were sharp and insightful. One
of the cases that he argued concerned the planetary protection guidelines that
are imposed on Mars surface missions. He
pointed out that these were putting excessive, and perhaps unnecessary, burdens
and expenses on Mars missions. There
seemed to be a lot of agreement with his logic.
It was inspiring to see that
astronaut Buzz Aldrin was in attendance.
He is an engineer and, even though he knows that he will never get to
Mars in person, he was giving his time and energy so that future generations
will fulfill that dream.
Gathering these, and many
other, key people at one place, at one time, was one of the prime achievements
of this workshop. Perhaps, NASA should
hold meetings like this every 2 - 4 years to serve as a way to encourage, and
gauge, new developments in Mars exploration technology.
There was a suggestion at the
workshop that NASA issue an AO (Announcement of Opportunity) for the 2018 Mars
launch window. It would have a cost
ceiling of $700 million. Since this may
include the cost of launch, the chosen mission will need to be minimal in
nature. My vote would go for the MAV
launch demo of Chandler, as this has a good chance of staying within budget,
while at the same time demonstrating technology crucial to MSR.
Philip Horzempa
- - - -
1. "Biomimetic Flying Swarm of Entomopters for Mars ExtremeTerrain Science Investigations," by Y. Bar-Cohen et al.
2. "Rock ClimbingRobots For Exploration and Sample Acquisition at Lava Tubes, Steep Slopes andCliff Walls," by A. Parness et al.
3. "BreakthroughConcepts for Mars Exploration with In-Situ Propellant," by J. Szabo et
al
4. "InterplanetarySample Canister for Mars Sample Return," by Nathan Strange et al
5. "Low-CostAthlete-Based Mars Lander/Rover," by C. McQuin and B. Wilcox
6. "Red Dragon-MSLHybrid Landing Architecture for 2018," by M. Grover et al
7. "A Storable, HybridMars Ascent Vehicle Technology Demonstrator for the 2020 Launch Opportunity,"
by Ashley Chandler et al.
8. "A Perspective onMars Ascent for Scientists," by John Whitehead
9. "Use of MRO OpticalNavigation Camera to Prepare for Mars Sample Return," by M. Adler et
al
10. "Toxicity Sample Return Tech Demo," by Brian
Muirhead et al.
I want to add to my comment about MSR cost and complexity. In connection with Rob Manning's talk,
ReplyDeleteI referred to increased complexity causing costs to increase "fractally." However, I think that Mr. Manning expressed the situation more accurately. He indicated that missions develop an almost fractal-like quality of complexity, that introduces costs in places and corners of your design, and your system, that you least expected it. The way that he expressed it may better capture the sense of the "monster" that is cost growth. He also indicated that the trick to making things inexpensive is to start simply and as inexpensively as you can from the very beginning.
In addition, I want to comment on the advantage that the OCT may gain from joining with Manned Spaceflight and the Science Mission Directorate on Mars missions. I think that being part of a real mission adds design focus for their technology development efforts.
Philip Horzempa